Электрические поля органов человека

0 48

Электромагнитное поле человека — это порождающие друг друга переменные электрические и магнитные поля.

Любое изменение магнитного поля со временем приводит к возникновению изменяющегося электрического поля, а всякое изменение электрического поля со временем порождает изменяющееся магнитное поле.

Если электрические заряды движутся с ускорением, то создаваемое ими электрическое поле периодически меняется и само создает в пространстве переменное магнитное поле и т.д.

Источниками электромагнитного поля могут быть:
— движущийся магнит;
— электрический заряд, движущийся с ускорением или колеблющийся, в отличие от заряда, движущегося с постоянной скоростью. Например, в случае постоянного тока в проводнике, здесь создается постоянное магнитное поле.

Электрическое поле существует всегда вокруг электрического заряда, в любой системе отсчета, магнитное – в той, относительно которой электрические заряды движутся, а электромагнитное поле – в системе отсчета, относительно которой электрические заряды движутся с ускорением.

Ускоренно движущиеся электрические заряды служат источником электромагнитных волн. А колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

Значит, электромагнитные волны являются ничем иным, как электромагнитным полем, которое распространяется в пространстве с конечной скоростью, зависящей от свойства среды.

Электромагнитные волны способны распространятся не только в веществе, но и в вакууме со скоростью света (С = 300 000 км/c). Они могут быть поперечными и бегущими волнами (переносят энергию).

Человеческий организм является не только прекрасной средой для распространения электромагнитных волн, но их источником. Учеными на протяжении почти 200 лет делались попытки измерения электромагнитных волн человека и других организмов. Но, не имея чувствительных приборов, исследования ограничивались изучением влияния внешних электромагнитных волн на человеческий организм.

С развитием физики сверхпроводимости в конце 1960-х годов были созданы новые виды приборов, позволяющие измерять магнитные поля, порождаемых живыми организмами, и, прежде всего человеком. В результате начала развиваться новая область исследований, основанных на анализе информации, поставляемой этими слабыми полями, и получившая название биомагнетизма в отличие от магнитобиологии, занимающейся изучением влияния сильных магнитных полей на биопроцессы.

Исследования электромагнитных волн человека позволили установить, что человек имеет свое электромагнитное поле как любой организм на земле, благодаря которому все клетки организма гармонично работают. Электромагнитные излучения человека еще называют биополем (видимая его часть – аура). Кроме того, это поле является основной защитной оболочкой нашего организма от любого негативного влияния. Разрушая ее, органы и системы нашего организма становятся легкой добычей для любых болезнетворных факторов.

Если на наше электромагнитное поле начинают действовать другие источники излучения, гораздо более мощные, чем излучение нашего тела, то в организме начинается хаос. Это и приводит к кардинальному ухудшению здоровья. И такими источниками могут быть не только бытовые приборы, мобильные телефоны и транспорт. Значительное влияние на нас оказывают большое скопление людей, настроение человека и его отношение к нам, геопатогенные зоны на планете, магнитные бури и т.д.

Вместе с тем биополе человека – это сложная электромагнитная система, которая взаимодействует с окружающим миром в различных диапазонах частот. Их можно условно разделить на:
— базовые частоты,
— поддерживающие частоты,
— частоты энергоинформационного обмена клеток.

Базовые частоты находятся в диапазоне от 7,8 до 14,1 Гц. Это частоты альфа и бета ритма головного мозга. Они практически совпадают с частотами магнитного поля Земли. Таким образом, человеческие биоритмы подобно камертону резонируют с электромагнитным полем Земли и синхронизируются.

Однако при увеличении базовой частоты выше 8 Гц шишковидная железа человека перестаёт синхронизировать работу левого и правого полушарий мозга. В результате происходит сбой контроля над подкоркой мозга, что вызывает нарушения выработки мужских или женских гормонов.

Поддерживающие частоты лежат в пределах 750-850 Гц. По мнению некоторых авторов, электромагнитные излучения на этих частотах являются опасными для организма человека, так как они совпадают с частотами его энергетических центров. Почти для каждого органа человеческого организма определен свой диапазон частот.

Например, для сердца он составляет 700-800 Гц с увеличением при стенокардии до 1500 Гц, для почек — 600-700 Гц с увеличением при воспалении до 900 Гц, для печени — 300-400 Гц с увеличением при воспалении до 600 Гц. Установлено, что при онкологических заболеваниях происходит изменение частот в более низкую область. По сведениям Ю. Аникина, при стрессе частота также уменьшается до 650 Гц, вызывая возникновение синдрома хронической усталости. Так как каждый орган человека имеет свою частоту, наличие электромагнитных полей отличающихся от этой частоты в состоянии усилить либо замедлить обменные процессы в организме.

Кроме того, в здоровом организме в неактивном состоянии находится большое количество различных микробов и вирусов. И изменение частот электромагнитного излучения может влиять на их активность. Поэтому при понижении частоты до 450 Гц могут активизироваться вирусы, а при 350 Гц — микробы.

Частоты энергоинформационного обмена клеток составляют 40-70 ГГц, что равняется 40-70 миллиардам колебаний в секунду. Это, пожалуй, самый важный для человека диапазон частот. Энергоинформационный обмен характеризует относительное динамическое постоянство внутренней среды (крови, тканей организма) и устойчивость основных физиологических функций (кровообращения, дыхания, обмена веществ и так далее). На энергоинформационном уровне протекает множество сложных процессов. Взаимодействие проходит в диапазоне крайне высоких частот, генерируемых клетками.

Общаясь друг с другом на частотах 40-70 ГГц, клетки образуют общее торсионное поле, которое может фиксировать их в определенном положении в пространстве. Притягиваясь, они создают различные клеточные объединения: внутренние органы, кости, мышцы и так далее. Общее торсионное поле человека также называют «эфирным».

По словам академика В. П. Казначеева, полевая форма живого организма является первичной, организующей, а молекулярная белково-нуклеиновая сущность — является следствием этой организации. Поэтому нарушения на уровне энергоинформационного обмена клеток могут приводить к нарушениям на физическом уровне.

Также научно-медицинскими учреждениями Швеции, Франции, Германии, Австрии и Японии установлено, что основной причиной негативного влияния является торсионная или информационная компонента электромагнитных излучений. Информационная компонента может быть значительно вреднее для здоровья человека, поскольку разрушает его биополе. В частности установлено, что обычное электромагнитное поле от монитора компьютера почти полностью ослабевает в радиусе 20-30 сантиметров, а наличие так называемого информационного поля может регистрироваться в радиусе до 10 метров и более.

В таком многообразии деление клеток происходит под влиянием различных волн, что способствует формированию различных органов человеческого организма. При этом каждый орган имеет свой индивидуальный спектр частоты колебания и, значит, собственное свечение — ауру.

После рождения ребенок попадает в новое волновое поле – поле жизни социума, в котором основную роль играют информационное поле общества и поле Земли.

Информационное поле общества, которое выражается во взаимоотношениях людей, и поле Земли, которое выражается в земной природе, влияют на чувства человека, порождая различные эмоции. Можно сказать, что человек живет на Земле в эмоциональном состоянии. И это состояние как часть информационного поля передается и воспринимается от одного человека к другому. И, кроме того, взаимодействует с полем Земли.

При таком взаимообмене эмоциями для земной жизни важную роль играют общие и индивидуальные взгляды людей, которые формируются философскими доктринами и учениями. На их основе формируются — общественная мораль, нормы поведения, характер человека.

Читайте еще:  Сбор земляники в лесу

Здоровье твоей планеты в твоих руках!

Виды физических полей тела человека. Их источники

1. Электромагнитные поля

3. Низкочастотные электрические и магнитные поля

4. Природа биомагнитных полей

6. Ферромагнитные частицы в организме

Магнитные поля внутренних органов, кожи, мышц, глаз

8. Нейромагнитные поля

9 .Радиоволны сверхвысоких частот (СВЧ)

10. Механизмы изменения температуры в теле человека

11. Применение СВЧ-радиометрии в медицине

13. Особенности обработки и представления тепловизионного изображения

Тепловидение в биологии и медицине

15. Оптическое излучение тела человека

16. Акустические поля человека

Введение

Вокруг любого тела существуют различные физические поля, определяемые процессами, происходящими внутри его. Не составляет в этом смысле исключения и человек. Физические поля, которые генерирует организм в процессе функционирования, называют собственными физическими полями организма человека.

Многочисленные физические методы исследования организма человека, использующие регистрацию собственных физических полей человека, позволяют получить информацию о процессах в организме, которую нельзя получить иными способами.

Ученых интересуют не сами физические поля биологических объектов, а возможность переноса по этим каналам информации, связанной с работой внутренних органов. Изучение физических полей биообъектов методологически очень близко к пассивному дистанционному зондированию Земли, атмосферы и т.д.

В применении таких методов накоплен большой опыт. Нет необходимости объяснять, сколь важную информацию о структуре и функционировании объекта они дают. Из-за нестационарности биообъектов необходимо регистрировать сигналы по многим каналам одновременно, включая электрофизиологический контроль.

Для получения пространственной структуры поля в каждом канале необходимо использовать матричные или сканирующие антенны. Аппаратура должна быть достаточно быстродействующей, чтобы успевать регистрировать сигналы в динамике, т.е. быстрее, чем изменяется состояние объекта. Практически во всех каналах необходимо тщательное экранирование от помех.

Задача состоит не в разработке принципиально новой аппаратуры, а в применении современной техники дистанционного зондирования в целях исследования биологических объектов и, главное, в создании методики таких исследований.

Так как биологический объект является сложной приемной системой то встает проблема изучения физических полей. Решение этой проблемы возможно только на основе тесной кооперации физиологов, биофизиков, психологов, медиков, а также специалистов отраслевых организаций, разрабатывающих измерительную аппаратуру.

Проблема систематического исследования физических полей биообъектов была поставлена в Институте радиотехники и электроники РАН Ю.В. Гуляевым и Э.Э.

Виды физических полей тела человека. Их источники

Вокруг человека существуют электромагнитные и акустические поля (гравитационное поле и элементарные частицы остаются за пределами нашего рассмотрения).

Можно выделить основные 4 диапазона электромагнитного излучения и 3 диапазона акустического излучения, в которых ныне ведутся исследования.

1. Электромагнитные поля

Диапазон собственного электромагнитного излучения ограничен со стороны коротких волн оптическим излучением, более коротковолновое излучение — включая рентгеновское и γ-кванты — не зарегистрировано. Со стороны длинных волн диапазон можно ограничить радиоволнами длиной около 60 см. В порядке возрастания частоты четыре диапазона электромагнитного поля, представленные на рис.12.1, включают в себя:

1) низкочастотное электрическое (Е) и магнитное (В) поле (частоты ниже 103 Гц);

2) радиоволны сверхвысоких частот (СВЧ) (частоты 109 — 1010 Гц и длина волны вне тела 3-60 см);

3) инфракрасное (ИК) излучение (частота 1014 Гц, длина волны 3-10 мкм);

4) оптическое излучение (частота 1015 Гц, длина волны порядка 0,5 мкм).

Такой выбор диапазонов обусловлен не техническими возможностями современной электроники, а особенностями биологических объектов и оценками информативности различных диапазонов для медицины.

Характерные параметры различных электромагнитных полей, создаваемых телом человека, приведены в табл.12.1

Источники электромагнитных полей разные в различных диапазонах частот. Низкочастотные поля создаются главным образом при протекании физиологических процессов, сопровождающихся электрической активностью органов: кишечником (

1 мин), сердцем (характерное время процессов порядка 1 с), мозгом (-0,1 с), нервными волокнами (-10 мс). Спектр частот, соответствующих этим процессам, ограничен сверху значениями, не превосходящими

В СВЧ и ИК-диапазонах источником физических полей является тепловое электромагнитное излучение.

Чтобы оценить интенсивность электромагнитного излучения на разных длинах волн, тело человека, как излучатель, можно с достаточной точностью моделировать абсолютно черным телом, которое, как известно, поглощает все падающее на него излучение и поэтому обладает максимальной излучающей способностью.

Излучательная способность тела — количество энергии, испускаемой единицей поверхности тела в единицу времени в единичном интервале длин волн по всем направлениям — зависит от длины волны X и абсолютной температуры тела Т.

ИК-излучение тела человека измеряют тепловизорами в диапазоне 3-10 мкм, где оно максимально.

Диапазон собственного акустического излучения ограничен со стороны длинных волн механическими колебаниями поверхности тела человека (0,01 Гц), со стороны коротких волн ультразвуковым излучением, в частности, от тела человека регистрировали сигналы с частотой порядка 10 МГц.

В порядке возрастания частоты три диапазона акустического поля включают в себя:

1) низкочастотные колебания (частоты ниже 103 Гц);

2) кохлеарную акустическую эмиссию (КАЭ) — излучение из уха человека (v

3) ультразвуковое излучение (v

Источники акустических полей в различных диапазонах частот имеют разную природу.

Низкочастотное излучение создается физиологическими процессами: дыхательными движениями, биением сердца, током крови в кровеносных сосудах и некоторыми другими процессами, сопровождающимися колебаниями поверхности человеческого тела в диапазоне приблизительно 0,01 — 103 Гц.

Это излучение в виде колебаний поверхности можно зарегистрировать контактными, либо не контактными методами, однако его практически невозможно измерить дистанционно с помощью микрофонов. Это связано с тем, что идущие из глубины тела акустические волны практически полностью отражаются обратно от границы разуй раздела "воздух-тело человека" и не выходят наружу в воздух из тела человека. Коэффициент отражения звуковых волн близок к единице из-за того, что плотность тканей тела человека близка к плотности воды, которая на три порядка выше плотности воздуха.

У всех наземных позвоночных существует, однако, специальный орган, в котором осуществляется хорошее акустическое согласование между воздухом и жидкой средой, — это ухо.

Среднее и внутреннее ухо обеспечивают передачу почти без потерь звуковых волн из воздуха к рецепторным клеткам внутреннего уха. Соответственно, в принципе, возможен и обратный процесс — передача из уха в окружающую среду — и он обнаружен экспериментально с помощью микрофона, вставленного в ушной канал.

Источником акустического изучения мегагерцевого диапазона является тепловое акустическое излучение — полный аналог соответствующего электромагнитного излучения.

Оно возникает вследствие хаотического теплового движения атомов и молекул человеческого тела. Интенсивность этих акустических волн, как и электромагнитных, определяется абсолютной температурой тела. [4]

3. Низкочастотные электрические и магнитные поля

Электрическое поле человека существует на поверхности тела и снаружи, вне его.

Электрическое поле вне тела человека обусловлено главным образом трибозарядами, то есть зарядами, возникающими на поверхности тела вследствие трения об одежду или о какой-либо диэлектрический предмет, при этом на теле создается электрический потенциал порядка нескольких вольт.

Электрическое поле непрерывно меняется во времени: во-первых, происходит нейтрализация трибозарядов — они стекают с высокоомной поверхности кожи с характерными временами

100 — 1000 с; во-вторых, изменения геометрии тела вследствие дыхательных движений, биения сердца и т.п. приводят к модуляции постоянного электрического поля вне тела.

Еще одним источником электрического поля вне тела человека является электрическое поле сердца.

Читайте еще:  Из чего состоят рога оленя

Приблизив два электрода к поверхности тела, можно бесконтактно и дистанционно зарегистрировать такую же кардиограмму, что и традиционным контактным методом. Отметим, что этот сигнал ни много раз меньше, чем поле трибозарядов. [1]

В медицине бесконтактный метод измерения электрических полей, связанных с телом человека, нашел свое применение для измерения низкочастотных движений грудной клетки.

При этом на тело пациента подается переменное электрическое напряжение частотой — 10 МГц, а несколько антенн-электродов подносят к грудной клетке на расстоянии 2-5 см.

Антенна и тело представляют собой две обкладки конденсатора. Перемещения грудной клетки меняет расстояние между обкладками, то есть емкость этого конденсатора и, следовательно, емкостной ток, измеряемый каждой антенной. На основании измерений этих токов можно построить карту перемещений грудной клетки во время дыхательного цикла.

В норме она должна быть симметрична относительно грудины. Ее симметрия нарушена и с одной стороны амплитуда движений мала, то это может свидетельствовать, например, о скрытом переломе ребра, при котором блокируется сокращение мышц с соответствующей стороны грудной клетки.

Магнитные и электрические поля человека

Электрическое поле человека существует на поверхности тела и снаружи, вне его.

Электрическое поле вне тела человека обусловлено главным образом трибозарядами, то есть зарядами, возникающими на поверхности тела вследствие трения об одежду или о какой-либо диэлектрический предмет, при этом на теле создается электрический потенциал порядка нескольких вольт.

Электрическое поле непрерывно меняется во времени: во-первых, происходит нейтрализация трибозарядов — они стекают с высокоомной поверхности кожи с характерными временами

100 — 1000 с; во-вторых, изменения геометрии тела вследствие дыхательных движений, биения сердца и т.п. приводят к модуляции постоянного электрического поля вне тела.

Еще одним источником электрического поля вне тела человека является электрическое поле сердца.

Приблизив два электрода к поверхности тела, можно бесконтактно и дистанционно зарегистрировать такую же кардиограмму, что и традиционным контактным методом. Отметим, что этот сигнал ни много раз меньше, чем поле трибозарядов.

В медицине бесконтактный метод измерения электрических полей, связанных с телом человека, нашел свое применение для измерения низкочастотных движений грудной клетки.

При этом на тело пациента подается переменное электрическое напряжение частотой — 10 МГц, а несколько антенн-электродов подносят к грудной клетке на расстоянии 2-5 см.

Антенна и тело представляют собой две обкладки конденсатора. Перемещения грудной клетки меняет расстояние между обкладками, то есть емкость этого конденсатора и, следовательно, емкостной ток, измеряемый каждой антенной.

На основании измерений этих токов можно построить карту перемещений грудной клетки во время дыхательного цикла. В норме она должна быть симметрична относительно грудины.

Ее симметрия нарушена и с одной стороны амплитуда движений мала, то это может свидетельствовать, например, о скрытом переломе ребра, при котором блокируется сокращение мышц с соответствующей стороны грудной клетки.

Контактные измерения электрического поля в настоящее время находят наибольшее применение в медицине: в кардиографии и электроэнцефалографии.

Основной прогресс в этих исследованиях обусловлен применением вычислительной техники, в том числе персональных компьютеров. Они позволяют получать электрокардиограммы высокого разрешении (ЭКГ ВР).

Как известно, амплитуда сигнала ЭКГ не более 1 мВ, а ST-сегмента еще меньше, причем сигнал маскируется электрическим шумом, связанным с нерегулярной мышечной активностью.

Поэтому применяют метод накопления — то есть суммирование многих последовательно идущих сигналов ЭКГ. Для этого ЭВМ сдвигает каждый последующий сигнал так, чтобы его R-пик был совмещен с R-пиком предыдущего сигнала, и прибавляет его к предыдущему, и так для многих сигналов в течение нескольких минут. При этой процедуре полезный повторяющийся сигнал увеличивается, а нерегулярные по мехи гасят друг друга.

За счет подавления шума удается выделить тонкую структуру ST-комплекса, которая важна для прогноза риска мгновенной смерти.

В электроэнцефалографии, используемой для целей нейрохирургии, персональные компьютеры позволяют строить в реальном времени мгновенные карты распределения электрического поля мозга с использованием потенциалов от 16 до 32 электродов, размещенных на обоих полушариях, через временные интервалы порядка нескольких мс.

Построение каждой карты включает в себя четыре процедуры:

1) измерение электрического потенциала во всех точках, где стоят электроды;

2) интерполяцию (продолжения) измеренных значений на точки, лежащие между электродами;

3) сглаживание получившейся карты;

4) раскрашивание карты в цвета, соответствующие определенным значениям потенциала.

Получаются эффектные цветные изображения. Такое представление в квазицвете, когда всему диапазону значений поля от минимального до максимального ставят в соответствие набор цветов, например от фиолетового до красного, сейчас очень распространено, поскольку сильно облегчает врачу анализ сложных пространственных распределений. В результате получается последовательность карт, из которой видно, как по поверхности коры перемещаются источники электрического потенциала.

Персональный компьютер позволяет строить карты не только мгновенного распределения потенциала, но и более тонких параметров ЭЭГ, которые давно апробированы в клинической практике.

К ним в первую очередь относится пространственное распределение электрической мощности тех или иных спектральных составляющих ЭЭГ (α, Я, γ , δ, и θ-ритмы). Для построения такой карты в определенном временном окне измеряют потенциалы в 32 точках скальпа, затем по этим записям определяют частотные спектры и строится пространственное распределение отдельных спектральных компонент.

Карты α, δ, Я ритмов сильно отличаются.

Нарушения симметрии таких карт между правым и левым полушарием может быть диагностическим критерием в случае опухолей мозга и при некоторых других заболеваниях.

Таким образом, в настоящее время разработаны бесконтактные методы регистрации электрического поля, которое создает тело человека в окружающем пространстве, и найдены некоторые приложения этих методов в медицине.

Контактные измерения электрического поля получили новый импульс в связи с развитием персональных ЭВМ — их высокое быстродействие позволило получать карты электрических полей мозга.

Магнитное поле человека

Магнитное поле тела человека создается токами, генерируемыми клетками сердца и коры головного мозга. Оно исключительно мало — 10 млн. — 1 млрд. раз слабее магнитного поля Земли. Для его измерения используют квантовый магнитометр. Его датчиком является сверхпроводящий квантовый магнитометр (СКВИД), на вход которого включены приемы и с катушки.

Этот датчик измеряет сверхслабый магнитный поток, пронизывающий катушки. Чтобы СКВИД работал, его надо ох ладить до температуры, при которой появляется сверхпроводимость, т.е.

до температуры жидкого гелия (4 К). Для этого его и приемные катушки помещают в специальный термос для хранения жидкого гелия — криостат, точнее, в его узкую хвостовую часть, которую удается максимально близко поднести к телу человека.


Магнитное поле человека

В последние годы после открытия "высокотемпературной сверхпроводимости" появились СКВИДы, которые достаточно охлаждать до температуры жидкого азота (77 К).

Их чувствительность достаточна для измерения магнитных полей сердца.

Магнитное поле, создаваемое организмом человека, на много порядков меньше, чем магнитном поле Земли, его флуктуации (геомагнитный шум) или поля технических устройств.

Существуют два подхода к устранению влияния шумов. Наиболее радикальный — создание сравнительно большого объема (комнаты), в котором магнитные шумы резко уменьшены с помощью магнитных экранов.

Для наиболее тонких биомагнитных исследований (на мозге) шумы необходимо с шикать примерно в миллион раз, что может быть обеспечено многослойными стопками из магнитомягкого ферромагнитного сплава (например, пермаллоя).

Экранированная комната — дорогостоящее сооружение, и лишь крупнейшие научные центры могут позволить себе се сооружение. Количество таких комнат в мире в настоящее время исчисляется единицами.

Читайте еще:  Как сделать дизайнерский картон

Есть и другой, более доступный способ ослабить влияние внешних шумов. Он основан на том, что в большинстве своем магнитные шумы в окружающем нас пространстве порождаются хаотическими колебаниями (флуктуациями) земного магнитного поля и промышленными электроустановками.

Вдали от резких магнитных аномалий и электрических машин магнитное поле хотя и флуктуирует со временем, но пространственно однородно, слабо меняясь на расстояниях, сравнимых с размерами человеческого тела. Собственно же биомагнитные поля быстро ослабевают при удалении от живого организма.

Это означает, что внешние поля, хотя и намного более сильные, имеют меньшие градиенты (т.е. скорость изменения с удалением от объекта), чем биомагнитные поля.

Приемное устройство прибора со сквидом в качестве чувствительного элемента изготовляется так, что оно чувствительно только к градиенту магнитного поля, — в этом случае прибор называют градиометром.

Однако часто внешние (шумовые) поля обладают все же заметными градиентами, тогда приходится применять прибор, измеряющий вторую пространственную производную индукции магнитного поля — градиометр второго порядка. Такой прибор можно применять уже в обычной лабораторной обстановке.

Но все же и градиометры предпочтительно применять в местах с "магнитно-спокойной" обстановкой, и некоторые исследовательские группы работают в специально сооружаемых немагнитных домах в сельской местности.

В настоящее время интенсивные биомагнитные исследования ведутся как в магнитоэкранированных комнатах, так и без них, с применением градиометров.

В широком спектре биомагнитных явлений есть много задач, допускающих разный уровень ослабления внешних шумов.

Источником ЭП является биоэлектрическая активность электрогенных живых тканей, которая сопровождается протеканием электрических токов в организме, создающих на поверхности тела мозаику биопотенциалов. Последние могут возникать также за счет биохимических и физиологических процессов.

Токи заряженных частиц и неравновесная электрическая поляризация организма создают внутри и за его пределами постоянные, квазистатические и ПеЭП. В последнее время получило признание положение, что внутриклеточные микрополя

непосредственно участвуют в процессах, происходящих в живой клетке. Источником ПЭП клетки принято считать, поддерживаемую с помощью активного транспорта через мембрану, разность концентраций различных ионов.

Интенсивность поля определяется функциональным состоянием организма.

Внешние ЭМП могут возбуждать в организме колебания, совпадающие по фазам с сигналами, генерируемыми в определенных условиях самими организмами. Длина волны в системе по порядку величины должна равняться величине периметра клетки (микрон —

десятки микрон) и величины N=/l/|AA|, где А Л — смещение между

соседними резонансами, а Л длина волны. В возбужденной системе

Л в 10 6 раз короче длины волны в свободном пространстве.

Природа биомагнитных полей. В организме человека создаются МП частотой (0-1) кГц, которые могут быть вызваны тремя причинами. Прежде всего, биоэлектрические потенциалы различных органов, изменяясь во времени по частоте и по амплитуде, приводят к возникновению МП в соответствующих органах и тканях.

Другой источник МП — мельчайшие ферромагнитные частицы, попавшие или специально введенные в организм. Эти два источника создают собственные МП. Кроме того, при наложении внешнего МП проявляются неоднородности магнитной восприимчивости различных органов, искажающие наложенное внешнее поле.

МП в двух последних случаях не сопровождается появлением ЭП, поэтому при исследовании поведения магнитных частиц в организме и магнитных свойств различных органов применимы лишь магнитометрические методы. Биотоки же, кроме МП, создают и распределение электрических потенциалов на поверхности тела. Регистрация этих потенциалов уже давно используется в исследованиях и клинической практике — это электрокардиография, электроэнцефалография и т.п. Казалось бы, что их магнитные аналоги, т.е. магнитокардиография и магнитоэнцефалография, регистрирующие сигналы от тех же электрических процессов в организме, будут давать практически аналогичную информацию об исследуемых органах.

Однако, как следует из теории электромагнетизма, строение источника тока в электропроводящей среде (организме) и неоднородность самой это среды по-разному отражаются на распределении МП и ЭП: некоторые виды биоэлектрической активности проявляют себя преимущественно в ЭП, давая слабый магнитный сигнал, другие — наоборот. Поэтому есть много процессов, наблюдение которых магнитографически предпочтительнее.

Магнитография не требует прямого контакта с объектом, т. е. позволяет проводить измерения через повязку или другую преграду. Это не только практически удобно, но и составляет принципиальное преимущество перед электрическими методами регистрации данных, так как места крепления электродов на коже могут быть источниками медленно меняющихся контактных потенциалов. Подобных паразитных помех нет при магнитографических методах, и потому магнитография позволяет, в частности, надежно исследовать медленно протекающие процессы (на сегодняшний день с характерным временем в десятки минут).

МП быстро ослабевают при удалении от источника активности, так как являются следствием сравнительно сильных токов в самом работающем органе, в то время как поверхностные потенциалы определяются более слабыми и «размазанными» токами в коже. Поэтому магнитография более удобна для точного определения (локализации) места биоэлектрической активности.

И, наконец, индукция МП как вектор характеризуется не только абсолютной величиной, но и направлением, что также может давать дополнительную полезную информацию.

Основные источники МП в организме человека. Среди них, в первую очередь, можно перечислить следующие: сердце; внутренние органы, кожа, мышцы, глаза; мозг.

Сердце. Является наиболее сильным источником ЭП и МП, что способствовало развитию магнитокардиографии, которая позволила систематизировать особенности магнитного проявления различных сердечных заболеваний. Наиболее ярко достоинства магнитографии проявляются при наблюдении медленно меняющихся процессов: магнитографически были обнаружены постоянные «токи повреждения», возникающие при закупорке коронарной артерии; сигналы плода в материнском чреве.

Внутренние органы, кожа, мышцы, глаза. Магнитные проявления биологической активности свойственны многим органам живых организмов. Установлено, что постоянные или колеблющиеся с периодом в несколько минут МП характерны для желудка человека, причем вид сигнала явно определяется функциональным состоянием желудка. Сигналы различны до и после приема пищи, изменяются при приеме воды (натощак) или лекарства.. Этот факт может в

дальнейшем найти применение в диагностике желудочных заболеваний.

Были обнаружены МП постоянных электрических токов в коже, появляющихся при прикосновению к покрывающему ее волосяному покрову.

Измерены МП при сокращении скелетных мышц человека. Запись этих полей как функции времени называют

магнитомиограммой (ММГ). В дополнение к высокочастотным компонентам МП (10-150 Гц), регистрируемым также и электромиографически, наблюдалась медленно меняющаяся составляющая ММГ, возникавшая при сокращении мышцы или при ее легком массаже. Такое МП свойственно мышцам ног и способно существовать около часа.

Известно, что глаз — источник довольно сильного ЭП, так как работа сетчатки сопровождается возникновением потенциала до 0,01 В между передней и задней ее поверхностями. Это вызывает в окружающих тканях электрический ток, МП которого можно регистрировать в виде магнитоокулограммы (МОГ) при движении глаз и в виде магниторетинограммы (МРГ) при изменении освещенности сетчатки. Так, магнитоокулограмма глаза при моргании характеризуется величиной индукции МП в 10 нТл при электрическом потенциале в 50 мкВ. При регистрации магнитоэнцефалограммы обнаружено МП, индукция которого составляла приблизительно 1 нТл при электрическом потенциале 10 мкВ.

Мозг человека. При работе мозга, основы которой пока еще во многом загадочны, возникают как ЭП, так и МП. Наиболее сильные сигналы порождаются спонтанной ритмической активностью мозга.

Оставьте ответ

Ваш электронный адрес не будет опубликован.

Adblock detector